Practice for Final Schneider Always give reasons

- 1. (15 points) Write down the number of possibilities in the following problems (you can leave in symbolic form with numbers in correct places)
 - **a.** The number of different letter arrangements from **tessellate**
 - b. How many different 7 card poker hands are there (you get dealt 7 cards to look at)
 - c. How many different binary numbers are there of length less that or equal to 10.
 - d. You have 16 people in a class. How many ways can they line up for lunch?
 - e. How many outcomes of 20 flips of a coin have less than 5 heads?
- 2. (20 points) Fifty five percent of the students at a certain school wear neither a ring nor a necklace. Twenty percent wear a ring and forty percent wear a necklace. If one of the students is chosen randomly what is the probability that the student is wearing.
 - a. a ring or a necklace?
 - b. a ring and a necklace?
- 3. (15 points) Suppose for the two events A, B we know P(A|B)=.2; P(B)=.5; and $P(AB^c)=.2$. Find P(B|A).
- 4. (30 points) Suppose that a fair die is independently rolled twice.
 - a. What are the probability mass functions for the random variables R_1 , R_2 that are the values of the first and second roll respectively? (Graph them)
 - b. What is the cumulative density function of R_1 ? Graph it.
 - c. Graph the probability mass function of the random variable 3*R₁.
 - d. Graph the probability mass function of the random variable R₁-3
 - e. What is $E(R_1)$ and $E(R_2)$?
 - f. What is $Var(R_1)$ and $Var(R_2)$?
 - g. Consider the random variable $S=R_1+R_2$ (the sum of the rolls) What is $P(\{S=6\})$?
 - h. Consider the random variable $M=R_1*R_2$ (the product of the rolls). What is $P(\{M=6\})$?
 - i. What is E(S)?
 - j. What is E(M)?
 - k. What is Var(S)?
- 5. (30 points) Use theorems or definitions to show:
 - a. $Var(aX) = a^2(Var(X))$ where a is some number. (do not use this fact to prove itself)
 - b. Give an example where $Var(X_1+X_2) \neq Var(X_1)+Var(X_2)$
 - c. Let $X_1, X_2...X_n$ are independent random variables having a Bernoulli distribution ($P({X_i=1}=p; P({X_i=0})=q)$:
 - i. what is the $E(X_i)$?
 - ii. what is the $Var(X_i)$?
 - iii. If $A = (X_1 + X_2 + ... + X_n)/n$ what is the E(A)?(A is the average)
 - iv. What is the Var(A)?